To obtain data from the European Vegetation Archive (EVA), please first make an enquiry to the EVA database administrator Ilona Knollová (ikuzel@sci.muni.cz) whether the data meeting your needs are available. If they are, please fill in the form below and submit it to Ilona or another member of the EVA Coordinating Board.

Applicant’s name:
Trevor S Fristoe; Mark van Kleunen; Milan Chytrý

Applicant’s institutional address:
Universität Konstanz, Germany; Masaryk University, Brno, Czech Republic

Applicant’s e-mail:
trevor.fristoe@uni-konstanz.de; mark.vankleunen@uni-konstanz.de; chytry@sci.muni.cz

Project title:
Do community characteristics in the native range predict invasion success?

Brief description of aims and methods of the study:
Ecological and evolutionary history are likely important in determining the potential success of species when establishing in novel environments. Yet the biotic conditions experienced by species in their native range are rarely considered in studies on invasiveness (though see Fridley and Sax, 2014). We will test whether species that occur at higher abundances and co-occur with a higher diversity of species in their native European range have been more successful invaders. Data on relative abundance and co-occurring species will come from EVA vegetation plots and invasion success will be measured using data from GloNAF (van Kleunen et al., 2018). We will additionally assess whether patterns vary by habitat or with different levels of human disturbance.

Will someone else be involved in data editing or analysis in addition to the applicant?
Core members of the GloNAF working group and members of the applicant’s teams at the University of Konstanz and Masaryk may assist in data analysis and interpretation as needed. Confidentiality in data use will be guaranteed.

Estimated time of delivery of results (e.g. manuscript submission):
2019

Geographic area needed (e.g. countries or range of geographic coordinates):
Europe (excluding North Africa and Turkey): 75° N, 30° E, 35° N, 15° W; plus Macaronesian Archipelagos.

Do you need plots to be georeferenced? If so, what is the minimum accuracy of plot location (in metres or kilometres) needed for your project?
Yes, minimum 10km

• Vegetation types needed (syntaxa):
 All

• Other data selection criteria:

• Envisaged publications:
 1-2

• Plant trait data from the TRY consortium. If you plan to combine your analysis of vegetation-plot data with plant trait data, you can also request for a dataset of 18 gap-filled traits for a large number of plant taxa prepared by the TRY consortium. These traits include Leaf area, Specific leaf area, Leaf fresh mass, Leaf dry matter content, Leaf C, Leaf N, Leaf P, Leaf N per area, Leaf N:P ratio, Leaf delta15N, Seed mass, Seed length, Seed number per reproductive unit, Dispersal unit length, Plant height, Stem specific density, Stem conduit density, and Conduit element length. This dataset can be provided to you from the EVA manager together with the vegetation-plot data. If you use this dataset, you must inform about your project the TRY data contributors who might be potentially interested and invite them as potential co-authors, assuming they will make an intellectual contribution to your paper. The list of the TRY data contributors will be sent to you together with the gap-filled trait dataset.

No

• Specification of the co-authorship arrangements in publications based on the requested data. Note that the EVA Rules recommend that co-authorship is offered to a representative of each database providing data that are particularly important for the project (e.g. unique vegetation types, under-represented geographic areas) or make up more than 10% of the final dataset (5% threshold can be considered too). These database representatives should be experts in the topic of the project (they do not need to be the custodians or deputy custodians) and they should contribute to the project more than just by providing the existing data, e.g. by intellectual contribution to the concept of the paper, preparation of new data, or helping with data analysis, interpretation of the results or writing parts of the paper (see the IAVS Code of Professional Ethics: http://iavs.org/Governance/Code-of-Professional-Ethics.aspx). The project leader should enable active participation by regularly informing potential co-authors about the progress of the project from its early stage. The project leader should also make final co-authorship arrangements based on the real input of the individual contributors.

Trevor Fristoe and Mark van Kleunen will be the lead authors of planned publications and will inform data providers when major steps in the projects are achieved. Co-authorship will be offered to a representative of each database that will be represented in at least 5% of the relevés included in the final analyses or fewer for databases for vegetation types with a general lack of data. Additional persons who provide significant conceptual or analytic contributions may also be invited as co-authors. Following the EVA rules and established practices, we expect co-authorship to be associated with intellectual contribution to the paper, not merely with data provision.

• Eligibility of the applicant to receive EVA data. Specify to which EVA database the applicant has contributed; if the applicant is not the custodian or deputy custodian of an EVA database, give a name of a custodian or deputy custodian who supports this data request.
I agree with the terms of EVA Data Property and Governance Rules as approved on 26 May 2012 (http://euroveg.org/download/eva-rules.pdf).

If I ask for the plant trait data from TRY, I agree to invite to my project the TRY data contributors following the list received from the EVA database manager.

Konstanz, Germany 27.11.2018

Trevor Fristoe